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THEORY OF THE MOTION OF SYSTEMS WITH ROLLING* 

N.A. FUFAEV 

A mathematical model is proposed for describing the motions of a system 
with rolling, and with or without slippage. Conditions axe given for the 
transition from one mode of motion to another, Examples are included. 

Boiling without slippage is equivalent to determining a kinematic constraint, generally 
rheonomic /l/, described by differential equations linear with respect to the generalized 
velocities. The equations cannot usually be reduced to finite relations connecting the general- 
ized coordinates, and therefore rolling without slippage represents a motion with a non- 
holonomic constraint. Study of the motion of a system with rolling, taking slippage into 
account, reduces to the study of the dynamics of a system with releasing kinematic constraints. 
Two problems arise in this context. 

lo. Using differential equations to describe the motion of a system with rolling in the 
general case; 

20 * Establishing the conditions for transferring from one rolling mode to another. 
In the classical mechanics of non-holonomic systems where rolling without slippage is 

usually discussed, the second problem disappears, and the first problem was solved by Chaplygin, 
Voronets,Boltzmann, Hamel, et al. When a wheel with an elastic deformable type rolls without 
slippage, kinematic constraints appear which differ considerably from the classical non- 
holonomic constraints arising when a rigid body is rolling. The general equations of motion 
of a wheeled carriage executing small deviations from its uniform rectilinear motion were given 
in /2/, where the Keldysh theorem concerning the rolling motion of a wheel with an elastic 
tyre was used. The equations were generalized in /3/ to the case of the curvilinear motion of 
a wheeled carriage along a trajectory of fairly small curvature. 

In general, the equations of motion of a system with rolling have the simplest form in 
the moving coordinate system /4, 5/ and must be written in the formofequations in quasi- 
coordinates. As we know, the equations of motion of a non-holonomic system are also written 
in this form /6/, therefore the equations in quasicoordinates are the most suitable for des- 
cribing the motion of a system with rolling, with or without slippage. We must however 
generalize the well-known Boltzmann-Hamelequations to the case of a system with rheonomic 
kinematic constraints. The equations in quasicoordinates obtained in this manner solve the 
first of the above problems and can be used as a basis for the general theory of the motion of 
systems with rolling. 

Investigation of the structural features of the phase space of a system with rolling also 
enables the second problem to be solved. It also becomes clear that the equations of kinematic 
constraints describing rolling without slippage can be regarded as the equations of some 
hypersurface II in phase space. For the case of rolling without slippage we have the corre- 
sponding motion of a phase point along the surface Il in the region stable with respect to 
deviations from the surface n. By determining the boundaries of this region we can solve 
the problem of the conditions governing the passage from rolling without slippage to rolling 
with slippage, and we can find the conditions for the reverse process to occur. 

1. General equations of dynamics for a system with rolling. 
of the system with rolling be defined by n generalized coordinates 

Let the position 

without slippage by 
ql. qa, . . ., q,,, and rolling 

n-m equations of the form 

at* (9, t1 4s' + al (9, 1) = 0 

(1 = m -I- 1, m -I- 2, . . ., n) 
(1.1) 
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Here and henceforth the repeated indices denote summation from 1 to n. 
Let us write the D'Alembert-Lagrange equation 

d aT .3T 
-y-- 
dl ae, ap, -Q*) b=fJ 11.2) 

(T = T(& 9', t) is the kinetic energy of the system and 0, (q, q*, 1) are given generalized 
forces). We introduce the quasicoordinates n,, nZ,..., n,,, whose time derivatives are connected 
with the generalized coordinates by the following independent relations: 

511' = ars (9, t) gs' + al (a. t) (1.3) 

so that the right-hand sides of the last n-m relations are identical with the left-hand 

sides of Eqs.(l.l). Solving the set of equations (1.3) for q;, q;,..., q;, we obtain 

gs = b,l (g, t) ni -t b, (g, t) (1.4) 

It can be confirmed that the coefficients in (1.31 and (1.4) are connected by the follow- 
ing relations: 

af,b,t = 61, at = --a&,, bstair = &, Cl.51 

in which Sit and S,, axe the Kronecker deltas. According to (1.4) the variations of the 
true coordinates 69, and quasicoordinates Sn, are connected by the relations 6q,= b,, (q, t) 

hi. Substituting these into (1.2), we obtain a sum which, because of the independent 
nature of the variations 6nl, decomposes into n equations of the form 

11.6) 

The quantity I& = Qllbai represents the generalized force which performs work on the 
displacement 8~~ provided that all the remaining 6n are zero. We shall introduce the 
function T* = T* (q,n’,t) obtained from the expression for the kinetic energy T(q* q’, 1) after 

eliminating all g%', qz', . . ., qn’ with help of relations (1.4). Carrying out an inverse opera- 
tion on the function T* (q,n',t) obtained using relations (1.3) we clearly again obtain T {q, 

q’, t), i.e. 

T* (q, a~~’ + al, 1) - T (q, d, t) (1.7) 

Differentiating this relation with respect to * qs 1 we have 

which yields 

Using (1.5) we arrive at the following relation: 

Next, differentiating (1.7) with respect to qs, we obtain 

and hence 

where the partial derivative in the quasicoordinate m.1 denotes the operator $T*/aat = (aT*/ 

69,) b*i. Substituting the expressions obtained into (1.61, we obtain the required equations 

of motion 

(1.8) 
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The expressions for the coefficients YIJ~ and vrj in these equations are best found 

using so-called commutation relations /6/, which in the present case have the form 

d&Q - ddnl = ~*~d~~6n* + y~~~~~ (1.91 

and are constructed using expressions (1.3) and (1.4). 
Equations (1.8) in quasicoordinates differ from the Boltzmann-Hamel equations in ad- 

ditional terms Y~~(~T*/&x,'), which vanish only when system (1.3) is homogeneous and its co- 
efficient do not depend explicitly on time. 

Equations (1.8) describe the dynamics of a system with rolling, with or without slippage. 
Indeed, if we have rolling with slippage, then there are no equations (1.1) and the quantities 

%t * x;, . . ., I&', which we shall call the characteristics, can take any values. We determine 

them as functions of time using system (1.8) which , together with relations (1.3) forms a 

closed system of differential equations. If on the other hand we have rolling without slippage, 

then the characteristics n,+i =: a,,,+~' = . . . =&,’ =O and equations of dynamics (1.8) will be 
formulated, since equations (1.1) will be satisfied only for the first m characteristics n;, 
n2,_..,n,. 

In the case of a system with rolling represented by a wheeled vehicle, the conditions of 
rolling without slippage can hold not for all wheels, but for one wheel, two, etc. In this 

case the last n-m equations of motion (1.8) can be conveniently written in the form 

(1.10) 

(I = m + 1, m -k 2, . . ., n) 

after separating from the generalized forces l$ the forces Rz acting between the wheel and 
the road. 

Further, we shall consider the case when the wheels are rigid and dry frictional forces 
obeying the Coulomb-Amonton law exist in the areas of contact between the wheel and the 
supporting surface. Xn this case the reaction 

i 

- VN, (%‘>O) 
R,= - YN, < R, < vNI (n;= 0) (1.11) 

TN, (%’ < 0) 

provided that the I-th wheel has only a single component R~' of the slippage velocity, Y 
is the coefficient of sliding friction, and N, is the normal force acting on the I-th 
wheel from the direction of the supporting surface, 

When the slippage velocity has two components (~1~‘ is the longitudinal and %l * the 
transverse component), the reactions RI and RI+1 are given by the relations 

R1 = - vNpl (nl*a + n;:,)+, Ri+r = - VN~Jx;+~ (all‘2 + n;:&+ (1.12) 

provided that n,'#O and (or) IC~+~' + 0, and take any value within the region (Rj" _t RJ)‘~~ < 

vNi Wi > Oh provided that nl' = sI+l* = 0. 
Thus when the E-th wheel rolls without slippage, 

and RI+I in (1.10) are unknown functions of time, 
the quantity RIP or respectively R, 

like the phase variables, and are obtained 

by integrating the differential equations of motion. 

The system of equations (1.10) can be solved for the accelerations 
ating the remaining accelerations aj", 

ni'. After elimin- 
in these equations, we can use the equations of 

dynamics (1.8) written for the first m quasicoordinates, to write it in the standard Cauchy 
form 

n1 '* = fJ (!?I, * * *t Pnr a1 > * . -, a,, ’ &,+I, . , ., R,) 
(1 = m + 1, m -I- 2, . . ., n) 

(1.13) 

The equations obtained are used in Sect.2 to derive the conditions for transferring from 
the rolling of the wheel without slippage to rolling with slippage , and the conditions of the 
reverse process. Since n,' is a component of the slippage velocity j 
(1.13) expresses the dependence of the rate of change of the 

every equation of system 
I-th component on the values 

of the phase variables, since according to 11.11) and (1.12) the quantities &(I = m f 1,m f 
2 * . . .I 4 are also functions of the phase coordinates irrespective of the mode of rolling. 

2. Structure of the phase space of the system with rolling. The conditions 
for transfer from one mode of motion to the other. The motion of a system with 
rolling becomes geometrically clear when the phase space is brought into consideration and 
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the special features of its structure are explained. From Sect.1 it follows that in the case 
of motion with slippage the state Of the System at any instant t is determined by 2s para_ 
;;sErs: n generalized coordinates ~r,q~,...,q,, and n characteristics nl, * n2', . . ., n,'. There- 

equations (1.3) and (1.8) describe the motion of a representative point in extended 
2n +'I -dimensional phase space @((~,n', t). 

Equations (1.1) describing the rolling of the system in question without slippage, can 
be regarded as equations of some n .t m + 1 -dimensional hyperplane n 

n,+1.=0,X,+2'=0,...,n,'=O (2.1) 

in the phase space a. This implies that during rolling without slippage the representative 
point moves in the phase space CD along the hyperplane (2.1), obeying the equations of motion 
(1.8) written for the first characteristics nl’,np’, . . ..x.,,‘, only, and relations (1.3). Relations 
(2.1) must be taken into account in all these expressions. 

If a system with rolling is represented by a wheeled vehicle, the hyperplane consists of 
the intersection of the branches nl,nz,.,.,n', whose number r is determined by the number 
and the distribution of the wheels. The motion of the representative point along one of the 
branches nl,n*,...,nr corresponds to rolling without slippage of one (or several) wheel(s), 
and the motion along the hyperplane IX the rolling without slippage of all wheels simultane- 
ously. 

Let us consider the special features of the structure of the decomposition of the phase 
space @ into trajectories related to the presence of the branch R* (S = 1, 2, . . ..r). in the 
case when the wheels are rigid, and dry friction forces obeying the Coulomb-Amonton law appear 
during their contact with the supporting surface. Since the dependence of the dry friction 
force on the velocity of slippage u can be represented by a curve with a first-order dis- 
continuity at L' = 0, the differential equations describing the motion of the representive 
point in different regions of the phase space (0, produced by partitioning the latter with the 

hyperplanes nl,W.. ..,II’, will themselves be different. The equations may contain the 
quantities N, i.e. the normal pressure forces between the interacting bodies, and the forces 
may be constant (i.e. functions of the physical parameters of the system), or may also depend 
on the phase variables. 

Normally, the quantities No are finite and positive (N>o if the interacting bodies 
exert pressure on each other). When N, vanishes, it simple means that the corresponding 
bodies are no longer in contact. We shall assume that when N, have finite values, the usual 
conditions ensuring the existence and uniqueness of the solutions of differential equations 
with given initial values of the variables, are satisfied in all regions of the phase space 

Q of the system with rolling discussed here. 
It may happen however that when the parameters and the phase variables are in a certain 

ratio, the normal pressure N, becomes negative, passing from positive to negative values 
not through zero, but through infinity. (Such a situation arises when the coefficient of KS 
vanishes, or when the determinant of the system of equations used to determine the normal 
pressure force vanishes). In this special case (the Penleve paradox /7/) the initial hypotheses 
of the classical mechanics of solids are found to be insufficient to determine the motion of 
the system with rolling in question. The physical reason for the Penleve paradox is connected 
with a wedging effect, which leads, within the framework of the model of a perfectly rigid 

body, to the reaction forces increasing to infinity. The passage of the force N, from positive 
to negative values through infinity is expressed by the fact that a manifold of points exists 
in phase space, in which the phase velocity field undergoes second-order discontinuities. 
Such a form of violation of the regularity of the vector velocity field in phase space can 
serve as an indication that we have the Penleve paradox. 

Subsequent discussions will deal with systems with rolling in which the Penleve paradox 

does not occur. 
Let us assume, to be specific that the branch rIs corresponds to rolling of the s-th 

wheel without slippage. If by virtue of the constraints imposed onthe system the s-th wheel 
is forced to roll in such a manner that there is no side or longitudinal slippage, then the 
vector v, of the wheel slippage velocity will have a single component which we shall denote 

by n,'. The hyperplane nl(n,* = 0) will divide the phase space @ into two regions 

0+ (n; > 0) and a_ 6%' (0) 

According to the Coulomb-Amonton law the sliding friction froce takes, in the region @+ t 
a value depending on the normal pressure, and in the region @_.the same value but with opposite 

sign. Therefore, Eqs.(l.8) describing the motion of the representative point in a+ and Cb_, 

will be different in these regions. The solutions -of Eqs.(l.B) must match, when Passing from 
one region to the other, by virtue of the continuity of the phase coordinates. 

The motion of the representative point along the hyperplane FI' is determined by Rqs. 
(1.8) written for the quasicoordinates n,,...,n,,, a~,+,,...,%,, in which the relation x8’ =O 
has been taken into account. The motion, however, is realized only in the region G' of the 
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hyperplane II*, stable with respect to the deviations from W. The necessary and sufficient 
condition of stability of the region G' is that the distiibution of the phase trajectories 
in a small neighbourhood of the hyperplane Ii', must be such, #at the representative point 
moving along these trajectories arrrives at the hyperplane from the region @+, as well as 
from a_. We shall call such a distribution the link-up of the phase trajectories. Thus the 
connected region of the link-up of the phase trajectories defines the region G* on the hyper- 
plane IF. 

The boundary I* of the region G" will consist of r2 and l'_". If the representative 

point moving into the region Gb reaches the boundary lY+#, it passes to the region (D,,and 

after reaching the boundary l?_" it goes into the region @+. All this implies that the 
determination of the boundaries of C solves completely the problem of determining the con- 
ditions under which the rolling of a wheel without slippage changes to rolling with slippage, 
and the conditions of the reverse process. 

The mathematical determination of the region Gs now reduces to simultaneous satisfaction 
of the following two inequalities: 

lim nI," < 0, lim n,"> 0 (2.2) 
JX*+ Xs.-O 

Let n," = fd (n,‘, . . ., a&-1, ns’, nl+lr . . ., ax,,', IV,) be the equation of system (1.13) constructed 
for the quasicoordinate nr, where N, is the normal load on the s-wheel. Then inequalities 
(2.2) will take the form 

f, (xi, . . ., ni-1, 0, ni+lr . . ., n,‘, NJ G 0 (2.31 

f. (ax,‘, . . ., nil, 0, ~I+I, . . ., %,', ---NJ > 0 

Converting (2.3) into an equality we obtain the equations of the boundaries lY+' and r_‘ 
of the region G*. 

In the case in question the system with rolling is related to the well-known class of 
systems with discontinuous right-hand sides /a-10/. The results obtained here apply also 
to systems with rolling. We must only remember that unlike relay systems of automatic control, 
the equations of motion of the systems with rolling are usually non-linear in the regions @+ 
and @_. 

In the case of the rolling of a rigid wheel, the vector vg of the rate of slippage has 
usually two components, the transverse n,' and the longitudinal * n.t, * We shall consider a 

three-dimensional cross-section a)a of the phase space cb, plotting the quantity IC*', along 
the abscissa and x~+~', along the ordinate, and using as the z coordinate e.g. the angular 
velocity o1 of the natural rotation of the wheel. The straight line n,' = 0, n,,,' = 0, i.e. 
the axis o,, will represent the hyperplane II* in Q, . 

Introducing a cylindrical us, 6*, % coordinate system by means of the relations 
L', eos 6,, x,+r' = u,sin 6, 

n,' = 
and writing the equations of motion in the new phase variables ~~,ff~,~~, 

we obtain the equation v,' = F,(v,,~~, oJ, . . .) for v,. From the condition that v,',< 0 as v,-+O, 
it follows that the region G* is defined on the o, axis by the inequality 

F, (O,@,, as,. . .I < 0 (2.4) 

which must hold in the interval 0<6,(2n forallvaluesof 6,. Since the left-hand side 
of inequality (2.4) also contains all remaining phase variables which were assumed fixed when 
dicussing the three-dimensional cross-section, changing 12.4) into an equality yields the 
equation of the boundary P of G* on the hyperplane II" in the phase space Q. In this 
case the motion of the representative point inthe region G' on the hyperplane n' is described 
by the equation (1.8) written for the quasicoordinates al, . . ., %-l, x.+~, . . ., n, taking the 
relations n,' = 0, n,+r' = 0 into account. 

The present case differs from the two-relay system thus. In this case of the relay system 
the region G has a meaning on each hyperplane: nrr' =0 and x*+~' =O. The motion of the 
representative point on one Of these regions maps a so-called sliding mode of one of the 
relays, and the motion along their intersection maps a simultaneous sliding mode of both relays. 
In the case of a wheel, only the region G at the intersection of these hyperplanes, where the 
rolling of the wheel without slippage is mapped, has any meaning. 

Notes. lo. 
/9, lo/. 

The sliding modes in discontinuous systems have been studied by many workers 
An interpretation of a sliding mode in phase space has already been given in ,/ll/. 

The present paper, however, appears to be the first to employ an analogous approach to the 
study of systems with rolling, taking slippage into account. 

2O- According to (1.13) the left-hand sides of inequalities (2.3) and (2.4) contain the 
reactions RI (1= ~~+i,m+z,...,n), i.e. they depend on the mode of rolling of elastic wheels, 
e.g. of the I-th wheel. Therefore, we must distinguish here between two cases: 1) the I-th 
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wheel rolls with slippage, and 2) the I-th wheel rolls without slippage. 
In the first case we mast substitute into inequalities (2.3) and (2.4) the expressions 

(1.11) if the slippage velocity of the 1-a wheel has only a single component, and the ex- 
pression (1.12) when it has two components. In the second case the quantity & and the 
corresponding RI and Rt+; must be expressed in terms of the phase variables using the follow- 
ing procedure. When the i-th wheel has a single component of the slippage velocity, we must 
put s; = ";+1 =0 in Eq.(l.lO) written for the quasicoordinate sl, and eliminate the remaining 

accelerations x:, 
, 

appearing in this equation by means of the other equations of dynamics (1.8). 

When the slippage velocity of the I-th wheel has two components, we must write n; = n; = s;+, = 

Ii' 
1+1 

=O in equations (1.10) written for the quasicoordinate n, and x,+1, and eliminate the 

remaining accelerations n,, in these equations using the other equations of dynamics (1.8). 

As a result, the quantities RI and A,,, turn out to be the functions of the phase variables 

and should be substituted into inequalities (2.3) and (2.4) in the case when the I-the wheel 
rolls without slippage. 

30 . The proposed theory can be applied to the case of rolling of a wheel with a deformable 
tyre, even within the framework of the phenomenological theory (such as the Keldysh theory), 
only under the specified conditions. Since we have here, instead of a Point contact, an area 
of contact between the wheel and the supporting surface, we can have partial slippage of the 
tyre, or a moment of sliding frictional force may appear as a result of rotation of the 
contact area. In cases when these additional factors can be neglected and the slippage velocity 
field deviates little from the uniform, the theory developed here can also be applied to a 
wheel with a deformable tyre. 

Example 1. Let a perfectly rigid wheel, whose plane is vertical, roll along a horizontal 
rough line (Fig.1). A constant angular momentum M is applied to the wheel and a viscous 
frictional force with coefficient h acts on the wheel. Then the wheel motion is described by 
the equations 

mz" + hz. = R. mkzqi. = M - rR 

where m is the mass and r is the redius of the wheel, k is the central radius of gyration, x 
is the coordinate of the wheel's centre, cp is the angle of rotation and R is the horizontal 
component of the force of interaction between the wheel and the supporting straight line. If 
the wheel rolls without slippage, then the following relation representing the equation of 
kinematic constraint connects the variables used: 

2' - rm' = 0 

Fig.1 Fig.2 

Fig.3 Fig.4 

Let us introduce the dimensionless coordinates 
t,, = zr-1, t, = m-‘ht. R. = mr-‘h+R, M, = mr-zh-‘M 

n = k+-z 
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and write u = x0', o = Cp'. The equations of dynamics in the new variables take the form 

u'+ u = Ro, do'= M,-R@ (2.5) 

and the equations of kinematic constraints become 

v~U--o=o (2.6) 

Let R be the force of dry friction. The graph in Fig.2 shows, according to the Coulomb- 
Amonton law, the dependence of R, on the slippage velocity D withb denoting the magnitude of 
the sliding friction. From (2.5) and (2.6) and the graph of the function Ro=R,(v)r it 
follows that the rolling of the wheel is described by the motion of the representative point 
in the phase plane @ (0, u), which splits into two regions, Q+, in which v>O, and cP_, in 

which v<o. the straight line II on which v=O, forms the boundary between them. The motion 
of the representative point in the phase plane QI is described by the equations 

u'+ u= --6, ao'= MO+ b (0+) 
(i+ (1) o'$ 0 = M, 0-U 
u' + u = b, co’ = M, - b (a_) 

Fig.3 shows the decomposition of the plane CD into trajectories in the case O<M,<b 
where the values u+ = &I(1 + LI) bTM,ja-1 are obtained fromthecondition that the phase trajec- 
tories arein contact with the bisectrix u=w in the region UJ, and a_. The rolling of 
the wheel without slippage is represented by the motion of the phase point in the region II 
on the segment Ic_~u< U+, where we have a stable singularity Y- 0= MO. The phase pattern 
shown in Fig.3 shows that in the case in question and for any intial conditions, the wheel 
will eventually end in a stable stationary motion, i.e. rolling without slippage. 

In the case when MO> b we have a phase pattern shown in Fig.4, Here, for any initial 
conditions the representative point in the phase plane @(a, u) will approach asymptotically, 
with time the motion along the straight line Y= b with velocity (M,- b)&)O. At the 
same time the quantity o will increase to infinity. Such a motion of the representative point 
corresponds to a wheel rolling with slippage, SO that the velocity of the wheel centre tends 
to a finite value U= L, and the angular velocity of rotation increases to infinity. 

Example 2. we shall consider the problem of the motion of a motorcycle taking sideways 
slippage of the wheels into account , under the following simplifying assumptions: the mass 
of the rigid wheels is negligible compared with the mass of the rider and chassis. We shall 
regard the rider and the chassis as a single rigid body of mass m, with principal central 
moments of inertia A and B. The velocity V of the longitudinal motion of the motorcycle and 
the angle of rotation of the steering + are given functions of time; the quantity q, and 
the angle of inclination of the chassis x, the rate of transverse displacement of the centre 
of mass u and the projections o1r 01 of the instantaneous angular velocity of the body on 
the principal direction of the central energy ellipsoid are all fairly small. Then, with 
both wheels sliding sideways, the equations of motion linearized with respect to small quanti- 
ties, have the form (see Fig.5) 

mu' = --mV(o, sin a+ 0~~0s u)+ F, -t_ F, (2.7) 
Au,’ = H cos Q + W,Fl + KIFz’ 
Bo; = -H sin a - M2F, - KpFz 
x' = q cos a - o2 sin a; H = mg (hx - cllc-lq) 

Here F1. F, are the transverse reactions of the road on the rear and front wheel at the 
points of contact between the wheels and the road. Assuming that the reactions are dry 
friction forces, we have 

F 1,2 = - vN,,, sign u1 *, , if u,,* + 0 (2.8) 

and any value in the interval (-vN,,,< F,,,<~N,,,), provided that YIIZ = 0; v is the coefficient 
sliding friction N, = mgkl, N2= mg (c- L)+ are the normal pressure forces, and %I u1 are 
the transverse 
expressions 

sliding velocities of the rear and front wheel respectively, described by the 

U1 = U$- M,o, - M,o, 
up= U+ K,o,-Kzo,--, 

Y = cl+ - Vql cos h 

ML = h cos a - I sin a, 

(2.9) 

tive 

of a 

K, = h cos a-j- (c ‘- I) sin a 
M, = h sin ai_ 1 cos a, 
K, = h sin a - (c - 1) co8 a 

Equations (2.1) describe the motion of the representa- 
point in four-dimensional phase space ~(u,o~,o~,xL 
Let us consider possible special casesofthe motion 
motorcycle. 
Only the rear wheel slips. In this case the 
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representative point moves in the phase space cD on the hyperplane u,=O according to the 
equations of motion (2.71, from which we must eliminate F, and use the relation 

% E. u + 40~ - K,o, - Y = 0 

The motion on the hyperplane Up- 0 occurs in the region GL defined by the inequalities 
lim ut'<O, 
ur-+J 

lim ug' > 0 
u.-+-0 

According to (2.9) and (2.7) we have an expression for %. and obtain the first in- 
equality 

H (A-l& cos a + B-lK, sin a) -/- Fl (m-l j- A-lM,K, + 

B-‘M&) - vN, (m-l + A-‘K,’ + E-lKtz) - ‘I” - 

V(w, sin a+ ozcos a) < 0 

(2.10) 

where F~ is given by (2.8). The SeCOnd inequality separating out the region 62 is obtained 
from (2.10) by replacing N, by -N, and the sign 7 by >, 

only the front wheel slips. In this case the representative point moves along the 
hyperplane %=IJ in the region ~1 defined by the inequalities 

H (.4-ljW1 cos a + BelM1 sin a) + F, (m-l f AelMIKi$- 

B-lMsKS) - vN1 (m-1 -/- AwlM1* + B-1M,2) - 
(2.11) 

V(0, sin a+ wI co9 a)< 0 

where p* is given by (2.8). The second inequality is obtained from (2.11) by replacing N, 
by -N,and the sign d by >. 

Both wheels roll without slipping. In this case the representative point moves in the 
region representing the intersection of two hypexplanes, IL1= o and u,= 0. Using these 
equations and eliminating I.‘,, F, from (2.7), we arrive at the equation of motion of a motor- 
cycle without slipping 

CJl%" - mg c/1 % - CIJ,&" - (112~os j_+ mc&) ii*' + (2.12) 

(mgcll - r&1- COS >. -. JB21T' COS h) II' -= 0 
Jo = A COE? a+ 8 sin : u. + nzh’ 

J12 = (B - A) sin cL cc19 d + mid 

When r= const, the above equations becomes identical with the first equation of (1.5) 

in /12/, provided that we neglect in (1.5) the mass of the front part of the bicycle and the 
moments of inertia of the wheels. 

Motion in the region u,= (I, 11. == 0 occurs when the four inequallties (2.10) and (2.11) are 
satisfied simultaneously, in which 
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MOTION OF A HEAVY RIGID BODY ON A HORIZONTAL PLANE WITH VISCOUS FRICTION* 

The motion of an arbitrary, heavy rigid body on a horizontal plane with 
viscous friction is considered. It is shown that the limit set of trajec- 
tories of motion is represented by the set of motionsofthis body on a 
perfectly smooth surface without slippage. The set represents the inter- 
section of the manifolds of steady motions of the body on perfectly smooth 
and perfectly rough surfaces and, depending on the dynamic and geometrical 
characteristics of the body, it may include the states of equilibrium, 
steady rotations about the vertical , uniform rolling motions along a fixed 
straight line, and regular processions. Examples of the motion of specific 
bodies are discussed. 

N.K. MOSHCHUK 

1. Let a rigid body move along a fixed horizontal plane, touching it at a single point 
P of its surface. The motion takes place in a uniform gravitational field. The supporting 
plane is defined in the fixed OEnc coordinate system by the equation 5 = 0, andthe 05 
axis points vertically upwards. We shall introduce a right GZYZ, coordinate system rigidly 
fixed to the body, direct its axes along the principal central moments of inertia of the body, 
and place its origin at the centre of gravity of the body. We shall define the position of 
the body by the coordinates E, 11, 5 of its centre of gravity in the fixed coordinate system, 
and the Euler angles $,8,(~, defining the orientation of the body in absolute space. The 
coordinate c will be a known function of the angles 0 and q, i.e. <=f@,v)>O. We shall 
assume that the function f is a fairly smooth function of its arguments and such that the body 
can touch the supporting plane only at a single point of its surface. We will denote the 
projection of the centre of gravity G onto the supporting plane by Q. Henceforth, A,B, C 
will denote the moments of inertia of the body about the axes Gx,Gy,Gz,m is the mass of the 
body and g is the acceleration due to gravity. 

We have the following expression for 5‘: 

i' = Poe' + &U', pe = df,oe, pu = aftaq (1.1) 
The critical points of the function f@,(r) correspond to the positions of equilibrium 

of the body in the plane (P = Q,pe = pu = 0). Any body has at least two different positions of 
equilibrium. This follows from the fact that a function on a sphere has at least two critical 
points, 

Let US assume that the body is acted upon at the point P from the direction of the plane 
by the viscous force F = -mkVp, where VP is the velocity of the point P of the body in the 
fixed coordinate system, and k> 0 is the coefficient of friction. Then the following ex- 
pression can be obtained for the total energy E; 0 of the body: 

dE I dt = -mkVp2 (1.2) 

From (1.2) we see that E does not increase and VP tends to zero with time, i.e. the 
body has a tendency to avoid slipping /l/. Therefore we have 

lim E (t) = E* .> Y > 0, 
,-.cc 

Y = mg yin f (0, cp) (1.3) 
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